General Characteristics: EN 1.4828 is a heat resistant Cr-Ni-Si stainless steel with increased levels of Silicon as compared to type 309S. Its high chromium & nickel contents along with silicon provide superior resistance to oxidation & good strength at both room and elevated temperatures. # **Chemical Composition:** | JSL | EN standard | | %С | %Mn | %S | %Р | %Si | %Ni | %Cr | %N | |---------|-------------|-----|------|------|-------|-------|------|------|------|------| | J1.4828 | 1.4828 | Min | - | - | - | - | 1.50 | 11.0 | 19.0 | - | | | | Max | 0.20 | 2.00 | 0.015 | 0.045 | 2.50 | 13.0 | 21.0 | 0.10 | # **Mechanical Properties:** | Grade | Mechanical properties | UTS | YS | %EL | Hardness(HRB) | |--------|-----------------------|---------|-------|------|---------------| | | | (MPa) | (MPa) | | | | 1.4828 | EN standard | 550-750 | ≥ 230 | ≥ 28 | ≤95 | | | | | | | | # Physical Properties: | Density | Modulus of | Thermal | Thermal expansion | Electrical | |---------|------------------|-------------------|--------------------|-------------------| | (Kg/m³) | Elasticity (GPa) | Conductivity (W/m | coefficient (µm/m/ | Resistivity (μΩm) | | , ,, | | 0C) | 0C) | | | 7900 | 200 | 15 | 16.5 | 0.85 | | | | | | | ### Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets # Applications: Furnace parts, Conveyor belts & heating elements, Heat exchanger, Refinery and Chemical processing equipment ### Corrosion Resistance: In Solution Annealed condition, EN 1.4828 provides better corrosion resistance in marine atmosphere than type 304. EN 1.4828 has a high destructive scaling temperature of above $1000~^{\circ}\text{C}$ thus exhibiting good scaling resistance in both continuous & intermittent service. ### General Characteristics: Type J1.4841 is a highly alloyed stainless steel designed for service at elevated temperatures. High Chromium and Nickel contents enable this alloy to resist oxidation in continuous service temperatures of up to $1200\,^{\circ}$ C. Increased level of silicon in J1.4841 than type 310S further improves oxidation resistance at higher temperature. # Chemical Composition: | JSL | EN standard | | %С | %Mn | %S | %P | %Si | %Ni | %Cr | %N | |---------|-------------|-----|------|------|-------|-------|------|------|------|------| | J1.4841 | 1.4841 | Min | - | - | - | - | 1.50 | 19.0 | 24.0 | - | | | | Max | 0.20 | 2.00 | 0.015 | 0.045 | 2.50 | 22.0 | 26.0 | 0.10 | # **Mechanical Properties:** | Grade | Mechanical properties | UTS | YS | %EL | Hardness(HRB) | |---------|-----------------------|----------------|-------|------|---------------| | | | (MPa) | (MPa) | | | | J1.4841 | EN standards | <i>550-750</i> | ≥ 230 | ≥ 28 | ≤95 | | | | | | | | # **Physical Properties:** | _ | odulus of
ticity (GPa) | Thermal
Conductivity (W/m | Thermal expansion coefficient (µm/m/ | Electrical
Resistivity (μΩm) | |------|---------------------------|------------------------------|--------------------------------------|---------------------------------| | | | <i>0С</i>) | <i>оС</i>) | | | 7900 | 200 | 15 | 15.5 | 0.84 | ### Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets # Applications: Furnace parts, Conveyor belts & heating elements, Heat exchanger, Refinery and Chemical processing equipment ### Corrosion Resistance: Type J1.4841 provides good resistance to moist air at elevated temperatures. High chromium & nickel contents result in superior resistance to carburizing atmospheres as compared to type 304. This grade provides resistance to oxidation even at continuous service temperature of $1200\,^{\circ}\text{C}$. # J301/J301L/J301LN AUSTENITIC STAINLESS STEEL # General Characteristics: 301 is an austenitic stainless steel with lower Cr & Ni than 304 to improve its work hardening rate at lower cost. Excellent mechanical property & corrosion resistance make it suitable for application like transportation, architectural and electrical equipment etc. 301L is low carbon variant of 301 grade to avoid carbide precipitation during welding. 301LN is another variant with high nitrogen for better strength and corrosion resistance. # Chemical Composition: | JSL | ASTM | | %С | %Mn | %S | %P | %Si | %Ni | %Cr | %N | |--------|-------|-----|------|------|-------|-------|------|-----|------|------| | J301 | 301 | Min | - | - | - | - | - | 6.0 | 16.0 | - | | | | Max | 0.15 | 2.00 | 0.030 | 0.045 | 1.00 | 8.0 | 18.0 | 0.10 | | J301L | 301L | Min | - | - | - | - | - | 6.0 | 16.0 | - | | | | Max | 0.03 | 2.00 | 0.030 | 0.045 | 1.00 | 8.0 | 18.0 | 0.20 | | J301LN | 301LN | Min | - | - | - | - | - | 6.0 | 16.0 | 0.07 | | | | Max | 0.03 | 2.00 | 0.030 | 0.045 | 1.00 | 8.0 | 18.0 | 0.20 | # **Mechanical Properties:** | Grade | Mechanical properties | UTS | YS | %EL | Hardness(HRB) | |-------|-----------------------|-------|-------|------|---------------| | | | (MPa) | (MPa) | | | | 301 | ASTM A240 | ≥ 515 | ≥ 205 | ≥ 40 | ≤95 | | | | | | | | | 301L | ASTM A240 | ≥ 550 | ≥ 220 | ≥ 45 | ≤100 | | | | | | | | | 301LN | ASTM A240 | ≥ 550 | ≥ 240 | ≥ 45 | ≤100 | | | | | | | | # Mechanical Properties of Grade 301L at different temper condition: | Temper Condition | Y.S. (MPa), Min | U.T.S (MPa), Min | %EL, Min | |------------------|-----------------|------------------|----------| | 1/16 Hard | 345 | 690 | 40 | | 1/8 Hard | 415 | 760 | 35 | | ¼ Hard | 515 | 825 | 25 | | ½ Hard | 690 | 930 | 20 | # **Physical Properties:** | Density
(Kg/m³) | Modulus of
Elasticity
(GPa) | Thermal
Conductivity
(W/m ^o C) (at
100°C) | Thermal expansion
Coefficient(µm/m/°C)
(20-100°C) | Specific heat
(J/Kg.K)
(20-100°C) | Electrical
Resistivity
(μΩm) | |--------------------|-----------------------------------|---|---|---|------------------------------------| | 7910 193 | | 16.3 | 16.9 | 500 | 0.72 | ### Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets # **Applications:** 301/301L/301LN-transportation cars such as railway/metro coaches, subway cars, electrical equipment, endless belts, aircraft structural parts, trailer bodies and architectural parts etc. 301L tempers-transportation cars such as railway coaches, wagons, fixtures for construction purposes, electrical equipment and endless belts, springs, automotive gaskets ### Corrosion Resistance: Corrosion resistance of 301 is almost equivalent to 304 grade in mild corrosion environment. # JINDAL STAINLESS # J304/J304H/J304L/J304LN AUSTENITIC STAINLESS STEEL ### General Characteristics: 304 is most popular and versatile austenitic stainless steel grade with excellent corrosion resistance, formability, deep drawability and weldability. 304L is lower carbon version of 304 for excellent intergranular corrosion resistance. So, 304L can be extensively used in welded condition and does not require any post weld heat treatment. 304H is high carbon variant of 304 grade with higher strength above 450°C. 304LN is a nitrogen-strengthened variant of 304L. By means of solid solution strengthening, nitrogen provides significantly higher yield and tensile strength than 304L without adversely affecting ductility, corrosion resistance or non-magnetic properties. # **Chemical Composition:** | JSL | ASTM | | %С | %Mn | %S | %Р | %Si | %Ni | %Cr | %N | |--------|-------|-----|-------|------|-------|-------|------|------|------|------| | J304 | 304 | Min | - | - | - | - | - | 8.0 | 17.5 | - | | | | Max | 0.07 | 2.00 | 0.030 | 0.045 | 0.75 | 10.5 | 19.5 | 0.10 | | J304L | 304L | Min | - | - | - | - | - | 8.0 | 17.5 | - | | | | Max | 0.030 | 2.00 | 0.030 | 0.045 | 0.75 | 12 | 19.5 | 0.10 | | Ј304Н | 304Н | Min | 0.04 | • | • | • | 1 | 8.0 | 18.0 | • | | | | Max | 0.10 | 2.00 | 0.030 | 0.045 | 0.75 | 10.5 | 20.0 | - | | J304LN | 304LN | Min | • | • | • | - | 1 | 8.0 | 18.0 | 0.10 | | | | Max | 0.030 | 2.00 | 0.030 | 0.045 | 0.75 | 12 | 20.0 | 0.16 | # **Mechanical Properties:** | Grade | Mechanical properties | UTS
(MPa) | YS
(MPa) | %EL | Hardness(HRB) | |-------|-----------------------|--------------|-------------|------|---------------| | 304 | ASTM A240 | ≥ 515 | ≥ 205 | ≥ 40 | ≤92 | | 304L | ASTM A240 | ≥ 485 | ≥ 170 | ≥ 40 | ≤92 | | 304Н | ASTM A240 | ≥ 515 | ≥ 205 | ≥ 40 | ≤92 | | 304LN | ASTMA240 | ≥ 515 | ≥ 205 | ≥40 | ≤95 | |-------|----------|-------|-------|-----|-----| | | | | | | | # **Physical Properties:** | Density
(Kg/m³) | Modulus of
Elasticity
(GPa) | Thermal
Conductivity
(W/m °C) | Thermal Expansion coefficient(µm/m/°C) | Electrical
Resistivity
(μΩm) | |--------------------|-----------------------------------|-------------------------------------|--|------------------------------------| | 7910 | 195 | 16.3 | 17.3 | 0.72 | ### Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets # **Applications:** 304-Transport, chemical, petrochemical and fertilizers industries, dairy, food processing, pharmaceutical industries, hospital equipment, cryogenic vessels, households as utensils & appliances, heat exchangers, machinery in paper, pulp, textile and beverage industries; architectural applications like panels, curtain walls, roofing etc 304H-petroleum refineries, boilers, heat exchangers, condensers, pipelines, cooling towers, steam exhausts, and electric generation plants, also be found in fertilizer and chemical plants 304L-Tanks and containers for a large variety of liquids and solids, Process equipment in the mining, chemical, cryogenic, food, dairy and pharmaceutical industries 304LN- Heat exchanger, Chemical industry, food industry, petroleum industry, fabrication industry, nuclear industry, Railroad cars, pressure vessel, flanges and valves. ### Corrosion Resistance: These grades exhibit excellent resistance to wide range of atmosphere and corrosive media like petroleum, food, pharmaceutical, textile etc. ### General Characteristics: 304 is most popular and versatile austenitic stainless steel grade with excellent corrosion resistance, formability, deep drawability and weldability. 304* is having same chromium level as 304 with higher nitrogen and lower nickel content and ensure comparable performance with respect to 304 in respect of corrosion resistance with added advantage of superior yield strength at a lower cost # Chemical Composition: # Chemical Composition Range of 304 and 304* is given below: | | | - | _ | - | | _ | | | | |------|-----|------|------|-------|-------|------|------|------|------| | | | %С | %Mn | %S | %P | %Si | %Ni | %Cr | %N | | 304* | Min | - | - | - | - | - | 6.0 | 18.0 | 0.10 | | | Max | 0.07 | 2.00 | 0.030 | 0.045 | 0.75 | 8.5 | 20.0 | 0.20 | | 304 | Min | - | - | - | - | - | 8.0 | 18.0 | - | | | Max | 0.07 | 2.00 | 0.030 | 0.045 | 0.75 | 12.0 | 20.0 | 0.10 | ### *Typical Chemical Composition of 304 and 304* is given below:* | | %С | %Mn | %S | %P | %Si | %Ni | %Cr | %N | |------|------|------|-------|-------|------|------|-------|------| | 304* | 0.05 | 1.10 | 0.003 | 0.035 | 0.30 | 6.1 | 18.05 | 0.18 | | 304 | 0.05 | 1.10 | 0.003 | 0.035 | 0.30 | 8.05 | 18.05 | 0.06 | # **Mechanical Properties:** 304* fully conforms to the ASTM specification of 304 grade. | | YS
(MPa) | UTS
(MPa) | %EL | Hardness(HRB) | |----------------|-------------|--------------|------|---------------| | 304 ASTM Range | ≥ 205 | ≥ 515 | ≥ 40 | ≤92 | | 304* Typical | 351 | 667 | 58 | 84 | # **Physical Properties:** | Density
(Kg/m³) | Modulus of
Elasticity (GPa) | Thermal
Conductivity
(W/m ^o C) | Thermal Expansion coefficient(10 ⁻⁶ / ⁰ C) | Electrical
Resistivity (μΩm) | |--------------------|--------------------------------|---|--|---------------------------------| | 7910 | 198 | 16.3 | 18.2 | 0.72 | ### Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets ### **Corrosion Resistance:** Pitting is the most common form of corrosion in stainless steels. The resistance to pitting of a grade is generally assessed by Pitting Resistance Equivalent Number (PREN). PREN= %Cr + 3.3 * % Mo + 16* % N. | Grade | Pitting Resistance Equivalent Number (PREN) | |-------|---| | 304* | ≥21 | | 304 | ≥20 | 304* has a higher PREN compared to 304 grade. ### ➤ Salt Spray tests 304* exhibited no rusts after subjecting it to 500 hours of tests in Salt Spray chamber in 5% NaCl spray at 35degC as per ASTM B 117. This behavior is at par with ASTM 304. ### ➤ Potentiodynamic tests Potentiodynamic tests in various acidic media were carried out. # 1. Reducing inorganic acids Test solution: 50% Phosphoric Acid at 25degC Similar pitting potential and comparable passivation current for 304* is observed indicating similar behaviour in reducing inorganic media like phosphoric acid. ### 2. Oxidizing inorganic acids Test Solution: 50% Nitric Acid at 25degC Similar pitting and passivation current in oxidizing acids is observed. Typically 20-30% nitric acid is used as cleaning agent in food processing industries and chemical plants. The suitability of 304* is evident in such media. # 3. Organic Acids Test Solution: 50% Formic acid at 25degC Similar pitting resistance and slightly better passivation current is observed in 304* in organic media. Various food processing industries deal with organic acids and 304* is a recommended substitute for 304 in such applications. Boiling tests in wide range of corrosive media like chemicals, petroleum, food, pharmaceutical, textile etc exhibit the suitability of 304* to replace 304 grade. ### ➤ Boiling tests results | Acids | 304* | 304 | |---------------------------|------|-----| | 25%Acetic Acid | A+ | A+ | | 25% Lactic Acid | A+ | A+ | | 25%Citric Acid | A+ | A+ | | 10% Acetic+ 5% NaCl | A+ | A+ | | 3.5% NaCl | A+ | A+ | | 50% Nitric Acid | Α | Α | | 50% Ortho Phosphoric Acid | Α | Α | **Criterion:**<0.02 mmpy Outstanding (A^+), 0.02-0.1mmpy Excellent (A), 0.1-0.5 mmpy Good(B) 0.5-1.0 mmpy Fair (C), 1.0-5.0 mmpy Poor (D), # Welding: The fabrication of austenitic stainless steel typically 304 is well known among stainless steel fabricators. 304* has similar welding behavior compared to 304. This material is easily weldable by conventional practices like MMAW, TIG, MIG etc using standard welding electrodes like E308. Brief summary of the welding consumables for 304* is mentioned below. | Welding process | Without filler
metal | With filler metal | | | | |-----------------------|-------------------------|-------------------|-----------------|-----------------|--| | weiding process | Typical thickness | Thickness | Filler M | etal | | | | Typical thickness | THICKHESS | Rod | Wire | | | Manual Metal Arc | | ≥ 1.5 mm | E 308/308L, E | | | | Welding (MMAW) | | 2 1.3 111111 | 309 | | | | Gas Metal Arc Welding | | > 0.8 mm | | ER 308/308L, ER | | | (GMAW/ MIG) | | / 0.6 111111 | | 308LSi, ER309 | | | Gas Tungsten Arc | < 1.5 mm | > 0.5 mm | ER 308/308L, ER | ER 308/308L, ER | | | Welding (GTAW/ TIG) | \ 1.3 IIIIII | / 0.3 111111 | 308LSi, ER 309 | 308LSi, ER 309 | | | Resistance Welding: | ≤ 2 mm | | | | | | Spot, Seam | | | | | | | Submerged Arc Welding | | > 2 mm | | ER 308/308L, | | | (SAW) | | / 2 | | ER 309 | | Heat treatment is not essential after welding. However in order to fully restore the corrosion resistance of the metal, the welds must be mechanically or chemically descaled, then passivated and decontaminated. As in case of ASTM 304, If there is a risk of intergranular corrosion, a solution annealing treatment should be carried out. # **Applications:** 304* exhibits lustrous surface, very good weldability, very good formability and higher toughness. Equally good corrosion resistance and cost effectiveness make it a highly suitable material as replacement for 304 grade for a wide variety of applications: ### **Appliances:** Clock cases, Home mixers, ice cube maker parts, Name plates, stove supports, stove trims, Vacuum cleaner parts, Floor polisher covers, Washing machine parts. Water coolers, refrigerators, microwave ovens ### **Architectural** Airport exterior and interior trims, Angles, Mailbox, bathroom cabinet, Cafeteria equipment, Washroom fixtures, Window parts, Kitchen exhaust hoods, Revolving doors, Ventilation panels ### **Automotive** Bumper bolt caps, Door accessories, Seat anchor belts ### Beverages: Beer barrels, Brewery conveyor belts, Drinking tumblers, Soft drink liners/ parts/coolers, Wine serving buckets/ tanks, fermentation Vats. ### Citrus and Fruit Juices Manufacturing Handling, Crushing, Storage, Pipelines, Transportation for fruit-juice manufacturing plant. ### **Communications** Suspension brackets, Telephone coin chutes ### Construction Canopies- door and window, Masonry trowel, Sump pump starters ### Cookware and utensils Bread box, Cake covers, Coffee makers, Cookie cutters, Kitchen accessories ### **Dairy** Bulk milk containers, Cheese manufacturing, Cream separator parts, Milk transport tanks ### Electrical and electronic Bases for electronic, Capacitor cans, Circuit breaker parts, Electrical panel trims ### Food Processing and serving Bakery Dough carts, Cafeteria trays, Chocolate moulds, Commercial dishwater (interior and exterior), Ice buckets, trays, Counter tops, Restaurant cabinets, carts, Vending machine parts ### Household, Tableware and Cutlery House mail box, Medicine cabinet frames, Shower stalls, Dog and cat feeding bowls, Water bottles Cake Servers, Forks and spoons, Meat Steak Platters, Salad forks, servers, teaspoons ### Jewellery Watch case backs, Watch expansion bracelets ### **Plumbing** Bath tub drains, Toilet floats, Sinks # JSLA # AUSTENITIC STAINLESS STEEL ### General Characteristics: 305 grade is austenitic stainless steel that can be spun and deep drawn more easily due to an increased Ni content that decreases work hardening. # Chemical Composition: | JSL | ASTM | | %С | %Mn | %S | %Р | %Si | %Ni | %Cr | |------|------|-----|------|------|-------|-------|------|------|------| | J305 | 305 | Min | - | - | - | - | - | 10.5 | 17.0 | | | | Max | 0.12 | 2.00 | 0.030 | 0.045 | 0.75 | 13.0 | 19.0 | # **Mechanical Properties:** | Grade | Mechanical properties | UTS
(MPa) | YS
(MPa) | %EL | Hardness(HRB) | |-------|-----------------------|--------------|-------------|------|---------------| | J305 | ASTM A240 | ≥ 485 | ≥ 170 | ≥ 40 | ≤88 | # **Physical Properties:** | Density
(Kg/m³) | Modulus of
Elasticity (GPa) | Thermal
Conductivity
(W/m ⁰ C) | Thermal Expansion
Coefficient
(µm/m/°C) | Electrical
Resistivity (μΩm) | |--------------------|--------------------------------|---|---|---------------------------------| | 7930 | 193 | 16.2 | 17.3 | 0.72 | ### Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets # **Applications:** Any application requiring maximum formability such as spun or deep drawn eyelets, barrels, shells, cold headed rivets or screws will work well. ### **Corrosion Resistance:** Type 305 is suitable in wide variety of atmosphere in the chemical, textile, petroleum, dairy and food industries. This grade also provides good oxidation resistance in air up to 900°C. ### General Characteristics: Type 309S is an austenitic chromium-nickel stainless steel which is typically used for elevated temperature applications. Its high chromium & nickel contents provide superior resistance to oxidation, high corrosion resistance & good strength at both room and elevated temperatures. Type 309S having lower carbon content also minimizes carbide precipitation and thus improves weldability. # **Chemical Composition:** | JSL | ASTM | | %С | %Mn | %S | %Р | %Si | %Ni | %Cr | |-------|------|-----|------|------|-------|-------|------|------|------| | J309S | 309S | Min | - | - | - | - | - | 12.0 | 22.0 | | | | Max | 0.08 | 2.00 | 0.030 | 0.045 | 0.75 | 15.0 | 24.0 | # **Mechanical Properties:** | Grade | Mechanical properties | UTS
(MPa) | YS
(MPa) | %EL | Hardness(HRB) | |-------|-----------------------|--------------|-------------|------|---------------| | J310S | ASTM A240 | ≥ 515 | ≥ 205 | ≥ 40 | ≤95 | # **Physical Properties:** | Density | Modulus of | Thermal Conductivity | Thermal expansion | Electrical | |---------|------------|----------------------|-------------------|-------------------| | (Kg/m³) | Elasticity | (W/m ⁰ C) | coefficient | Resistivity (μΩm) | | | (GPa) | | (μm/m/°C) | | | 7900 | 200 | 15 | 16 | 0.78 | | | | | | | ### Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets # **Applications:** Furnace parts, conveyor belts & heating elements, carburizing - annealing boxes, heat exchangers, sulfite liquor handling equipment, kiln liners, oven linings, boiler baffles, refinery and chemical processing equipment, auto-exhaust parts. # Corrosion and oxidation Resistance: Type 309S provides better corrosion resistance to marine atmosphere than type 304. It exhibits high resistance to sulfite liquors and is useful for handling nitric acid, nitric-sulphuric acid mixtures, acetic, citric and lactic acids. Generally considered Heat Resisting Alloys, Type 309S has a very high destructive scaling temperature of about 1090 °C thus exhibiting good scaling resistance in both continuous & intermittent service. ### General Characteristics: 310S is a highly alloyed austenitic stainless steel used for high temperature application. Due to high Cr and Ni content, the steel exhibits excellent oxidation resistance and high strength at high temperature. # **Chemical Composition:** | JSL | ASTM | | %С | %Mn | %S | %Р | %Si | %Ni | %Cr | |-------|------|-----|------|-----|-------|-------|------|------|------| | J310S | 310S | Min | - | - | - | - | - | 19.0 | 24.0 | | | | Max | 0.08 | 2.0 | 0.030 | 0.045 | 1.50 | 22.0 | 26.0 | # **Mechanical Properties:** | Grade | Mechanical properties | UTS
(MPa) | YS
(MPa) | %EL | Hardness(HRB) | |-------|-----------------------|--------------|-------------|------|---------------| | J310S | ASTM A240 | ≥ 515 | ≥ 205 | ≥ 40 | ≤95 | # **Physical Properties:** | Density
(Kg/m³) | Modulus of
Elasticity (GPa) | Thermal
Conductivity (W/m
°C) | Thermal
expansion
coefficient
(µm/m/°C) | Electrical
Resistivity (μΩm) | |--------------------|--------------------------------|-------------------------------------|--|---------------------------------| | 7990 | 193 | 15 | 15.5 | 0.78 | # Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets # **Applications:** Used for air heaters, annealing boxes, ovens, carburizing boxes, fire box sheets, furnace linings, furnace stacks and dampers, gas turbine parts, heat exchangers, kiln linings, nozzle diaphragm assemblies for turbo jet engines, oil burner parts, paper mill equipment, oil refinery equipment and recuperator. # Corrosion Resistance: 310S has especially excellent resistance to stress corrosion cracking in chloride environment or in high density hot alkaline environment because of its high nickel content. 310S has similar acidic corrosion resistance as Type 304, but has excellent corrosion resistance to nitric acid because of high chromium content. # General Characteristics: J316 is standard Mo added austenitic stainless steel. Addition of Mo increases general corrosion resistance, resistance to pitting and crevice corrosion in chloride environments and high temperature strength. J316L is low carbon version of 316 for excellent intergranular corrosion resistance during welding. J316Ti is Ti stabilised 316 for excellent intergranular corrosion resistance at elevated temperature. # **Chemical Composition:** | JSL | ASTM | | %С | %Mn | %S | %P | %Si | %Ni | %Cr | %Ti | %Мо | %N | |--------|-------|-----|-------|------|-------|-------|------|------|------|---------|------|------| | J316 | 316 | Min | - | - | - | - | - | 10.0 | 16.0 | - | 2.00 | • | | | | Max | 0.08 | 2.00 | 0.030 | 0.045 | 0.75 | 14.0 | 18.0 | - | 3.00 | 0.10 | | J316L | 316L | Min | • | - | • | - | • | 10.0 | 16.0 | - | 2.00 | • | | | | Max | 0.030 | 2.00 | 0.030 | 0.045 | 0.75 | 14.0 | 18.0 | • | 3.00 | 0.10 | | J316Ti | 316Ti | Min | • | - | • | - | 1 | 10.0 | 16.0 | 5*(C+N) | 2.00 | • | | | | Max | 0.08 | 2.00 | 0.030 | 0.045 | 0.75 | 14.0 | 18.0 | 0.70 | 3.00 | 0.10 | # **Mechanical Properties:** | Grade | Mechanical | YS | UTS | %EL | Hardness(HRB) | |-------|------------|-------|-------|------|---------------| | | properties | (MPa) | (MPa) | | | | 316 | ASTM A240 | ≥ 205 | ≥ 515 | ≥ 40 | ≤95 | | 316L | ASTM A240 | ≥ 170 | ≥ 485 | ≥ 40 | ≤95 | | 316Ti | ASTM A240 | 205 | 515 | ≥ 40 | ≤95 | # Physical Properties: | Density
(Kg/m³) | Modulus of
Elasticity (GPa) | Thermal
Conductivity
(W/m ºC) | Thermal
Expansion
coefficient
(µm/m/°C) | Electrical
Resistivity (μΩm) | |--------------------|--------------------------------|-------------------------------------|--|---------------------------------| | 7980 | 193 | 16.3 | 15.9 | 0.72 | # Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets # **Applications:** 316- architectural trims, marine exteriors, chemical processing equipment, food processing equipment, petroleum refining equipment, pharmaceuticals equipment, photographic equipment, pulp & paper processing equipment and textile finishing equipment *316L*- food processing, chemical and petrochemical equipment, brewery equipment, coastal architectural paneling ,laboratory equipments, heat exchangers, mining screens, chemical transportation containers 316Ti- Chemical & Petrochemical Industry ### Corrosion Resistance: These grade exhibits excellent resistance to wide range of atmosphere and corrosive media like petroleum, food, pharmaceutical, textile etc. ### General Characteristics: Type 317L is a molybdenum-containing austenitic stainless steel for improved corrosion resistance as compared to Type 316L in extremely corrosive environments, such as chlorides or other halides environments. This grade also provides high intergranular corrosion resistance due to low carbon content. 317LN is nitrogen added grade with 317L for improved strength and pitting corrosion resistance. 317LMN is added with high molybdenum & Nitrogen for improved strength & corrosion resistance and is predominantly effective in enhancing resistance to pitting and crevice corrosion in acidic and chloride environment. # Chemical Composition: | ASTM | | %С | %Mn | %S | %P | %Si | %Ni | %Cr | %Мо | %N | |--------|-----|-------|------|-------|-------|------|------|------|-----|------| | 317L | Min | - | - | - | - | - | 11.0 | 18.0 | 3.0 | - | | | Max | 0.030 | 2.00 | 0.030 | 0.045 | 0.75 | 15.0 | 20.0 | 4.0 | 0.10 | | 317LN | Min | - | - | - | - | - | 11.0 | 18.0 | 3.0 | 0.10 | | | Max | 0.030 | 2.00 | 0.030 | 0.045 | 0.75 | 15.0 | 20.0 | 4.0 | 0.22 | | 317LMN | Min | - | - | - | - | • | 13.5 | 17.0 | 4.0 | 0.10 | | | Max | 0.030 | 2.00 | 0.030 | 0.045 | 0.75 | 17.5 | 20.0 | 5.0 | 0.20 | # **Mechanical Properties:** | Grade | Mechanical properties | UTS | YS (MD=) | %EL | Hardness(HRB) | |--------|-----------------------|-------|----------|------|---------------| | | | (MPa) | (MPa) | | | | 317L | ASTM A240 | ≥ 515 | ≥ 205 | ≥ 40 | ≤95 | | 317LN | ASTM A240 | ≥ 550 | ≥ 240 | ≥ 40 | ≤95 | | 317LMN | ASTM A240 | ≥ 550 | ≥ 240 | ≥ 40 | ≤96 | # **Physical Properties:** | Density
(Kg/m³) | Modulus of
Elasticity (GPa) | Thermal
Conductivity
(W/m ºC) | Thermal Expansion coefficient(µm/m/°C) | Electrical
Resistivity (μΩm) | |--------------------|--------------------------------|-------------------------------------|--|---------------------------------| | 7950 | 195 | 14.6 | 16.5 | 0.79 | ### Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets # **Applications:** 317L- Chemical, petrochemical process equipment, pulp, paper manufacturing, condensers in fossil and nuclear fueled power generation stations. 317LN - Various tanks, Vessels, Chemical plants, other equipments that require corrosion resistance similar to or higher than that of SUS 317L with higher strength. 317LMN - Air pollution control system; flue gas desulfurization system - stack liners, absorbers, ducts, dampers & fans; highly corrosive atmosphere in chemical & petrochemical, food & beverage processing and pharmaceutical equipments. ### Corrosion Resistance: Type 317L has excellent corrosion resistance in a wide range of chemicals, especially in acidic chloride environments such as those encountered in pulp and paper mills. Type 317LN has excellent corrosion resistance in sulphuric acid, phosphoric acid and organic acid environment than 316L and 317L grade. It has also higher pitting corrosion resistance compare to 316L and 317L grade. Type 317LMN has excellent corrosion resistance in highly corrosive acidic chloride environment; corrosion resistance of 317LMN is only slightly below that of 904L stainless steel. The high chromium, molybdenum, & nitrogen content enhance its ability to resist pitting & crevice corrosion. ### General Characteristics: J321 is Ti added 304 stainless steel grade for excellent intergranular corrosion resistance for high temperature (450-900°C) application. # **Chemical Composition:** | JSL | ASTM | | %С | %Mn | %S | %P | %Si | %Ni | %Cr | %Ti | %N | |------|------|-----|------|------|-------|-------|------|------|------|---------|------| | J321 | 321 | Min | - | - | - | - | - | 9.0 | 17.0 | 5*(C+N) | - | | | | Max | 0.08 | 2.00 | 0.030 | 0.045 | 0.75 | 13.0 | 19.0 | 0.70 | 0.10 | # Mechanical Properties: | Grade | Mechanical properties | YS
(MPa) | UTS
(MPa) | %EL | Hardness(HRB) | |-------|-----------------------|-------------|--------------|------|---------------| | 321 | ASTM A240 | ≥ 205 | ≥ 515 | ≥ 40 | ≤95 | # **Physical Properties:** | Density
(Kg/m³) | Modulus of
Elasticity (GPa) | Thermal
Conductivity (W/m
^O C) | Thermal expansion coefficient (µm/m/°C) | Electrical
Resistivity (μΩm) | | |--------------------|--------------------------------|---|---|---------------------------------|--| | 7925 | 193 | 16.1 | 17.1 | 0.72 | | ### Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets # **Applications:** Exhaust stacks and manifolds, pressure vessels, large mufflers for engines, expansion bellows, stack liners, thin wall tubes # Corrosion Resistance: J321 grade exhibits excellent resistance to organic chemicals, many inorganic chemicals, nitric acid and moderately in sulphuric acid. This grade shows improved resistance to intergranular corrosion compared to unstabilized grades (450-900°C). ### General Characteristics: Nb added austenitic stainless steel for elimination of carbide precipitation and thus improvement in intergranular corrosion resistance. # Chemical Composition: | JSL | ASTM | | %С | %Mn | %S | %Р | %Si | %Ni | %Cr | %Nb | |------|------|-----|------|------|-------|-------|------|------|------|--------| | J347 | 347 | Min | - | - | - | - | - | 9.0 | 17.0 | 10*(C) | | | | Max | 0.08 | 2.00 | 0.030 | 0.045 | 0.75 | 13.0 | 19.0 | 1.00 | # **Mechanical Properties:** | Grade | Mechanical properties | YS
(MPa) | UTS
(MPa) | %EL | Hardness(HRB) | |-------|-----------------------|-------------|--------------|------|---------------| | 347 | ASTM A240 | ≥ 205 | ≥ 515 | ≥ 40 | ≤92 | # Physical Properties: | Density
(Kg/m³) | Modulus of
Elasticity (GPa) | Thermal
Conductivity (W/m
^O C) | Thermal expansion coefficient(µm/m/°C) | Electrical
Resistivity (μΩm) | | |--------------------|--------------------------------|---|--|---------------------------------|--| | 7960 | 7960 193 | | 16.6 | 0.72 | | ### Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets # **Applications:** High temperature gaskets and expansion joints, rocket engine parts, aircraft collector rings and exhaust manifolds and chemical production equipment. ### **Corrosion Resistance:** 347 grade is more resistant to general corrosion in strongly oxidizing environments than Type 321. 347 grade is very high resistance to intergranular corrosion resistance. ### General Characteristics: 904L is an Austenitic Stainless Steel with high Nickel (25%) and Molybdenum (4.5%) providing good corrosion resistance to stress corrosion cracking in severe chloride environment. Low carbon content of 904L improves its welding characteristic by good resistance to intergranular corrosion. Annealed 904L provides excellent toughness even at sub-zero temperature. It contains a combination of chromium and molybdenum which provides it an improved level of resistance to pitting and crevice corrosion by chlorides compared to 316L Stainless Steel. The copper addition provides added resistance to reducing media such as hot phosphoric acid and dilute sulfuric acid. # **Chemical Composition:** | Designation | | %С | %Mn | %S | % P | %Si | %Ni | %Cr | %Мо | %N | %Cu | |-------------|-----|-------|------|-------|------------|------|------|------|------|------|------| | UNS N08904 | Min | | | | | | 23.0 | 19.0 | 4.00 | | 1.00 | | | Max | 0.020 | 2.00 | 0.035 | 0.045 | 1.00 | 28.0 | 23.0 | 5.00 | 0.10 | 2.00 | # **Mechanical Properties:** | Mechanical properties | UTS
(MPa) | YS
(MPa) | %EL | Hardness | |------------------------|--------------|-------------|--------|------------| | ASTM A240 - UNS N08904 | 490 min | 220 min | 35 min | 90 HRB max | # **Physical Properties:** | Density
(Kg/m³) | Modulus of
Elasticity
(GPa) | Coefficient of thermal expansion(µm/m/°C) | Thermal
Conductivity
(W/m ^o C) | Specific Heat
(J/Kg ^o C) | Electrical
Resistivity
(μΩ-cm) | |--------------------|-----------------------------------|---|---|--|--------------------------------------| | 7950 | 195 | 15.6 | 11.5 | 450 | 95.2 | ### Products available: The grade is available in both HRAP and CRAP finishes; and in different forms such as Coils, Plates, Sheets and Strips. # Applications: - 904L is widely used in chemical industries for components such tanks and other products used in handling sulphuric and phosphoric acid. - Fertilizer production equipments. - Bleaching equipments in pulp and paper industry. - Heat exchangers handling sea water. ### Corrosion Resistance: This alloy provides excellent general corrosion resistance and pitting or crevice corrosion that is usually higher than 316 Stainless Steel. 904L provides very good resistance to sulphuric acid, phosphoric and acetic acid. Resistance to chloride stress corrosion cracking depends on the percentage of nickel, with 25% nickel 904L offers more resistance stress corrosion cracking compared to an 8% nickel alloy like 304 Stainless Steel. ### Heat Treatment 904L in annealed state provides excellent impact strength at room temperature and at cryogenic temperatures. # General Characteristics: UNS S30815 is heat resistant Cr-Ni-N austenitic stainless steel with additions of silicon and rare earth metal - cerium. Cerium combined with silicon improves the oxidation and corrosion resistance. Due to the additions of carbon and nitrogen, UNS S30815 has more creep strength than 310S stainless steel at temperatures above 850 °C. Maximum Service temperature is nearly 1100 °C # **Chemical Composition:** Table 1 | UNS | | %С | %Mn | %S | %P | %Si | %Ni | %Cr | %N | %Ce | |-----------|-----|------|------|-------|-------|------|------|------|------|------| | S30815 | Min | 0.05 | - | - | - | 1.40 | 10.0 | 20.0 | 0.14 | 0.03 | | | Max | 0.10 | 0.80 | 0.030 | 0.040 | 2.00 | 12.0 | 22.0 | 0.20 | 0.08 | | FN 4 4025 | Min | 0.05 | - | - | - | 1.40 | 10.0 | 20.0 | 0.12 | 0.03 | | EN 1.4835 | Max | 0.12 | 1.00 | 0.015 | 0.045 | 2.50 | 12.0 | 22.0 | 0.20 | 0.08 | # **Mechanical Properties:** Table 2 | Mechanical properties | UTS
(MPa) | YS
(MPa) | %EL | Hardness | |------------------------|--------------|-------------|--------|------------| | ASTM A240 - UNS S30815 | 600 min | 310 min | 40 min | 95 HRB max | | Mechanical properties | Product
Form | UTS
(MPa) | YS
(MPa) | %EL | |-----------------------|-----------------|--------------|-------------|--------| | EN 1.4835 as per EN | Flat | 650- | 310 | 40 min | | 10095 | product | 850 | min | | # Physical Properties: Table 3 | Density
(Kg/m³) | Modulus of
Elasticity
(GPa) | Poisson's
Ratio | Thermal
Conductivity
(W/m ^o C) | Specific
Capacity
(J/Kg ^o C) | Electrical
Resistivity
(μΩm) | |--------------------|-----------------------------------|--------------------|---|---|------------------------------------| | 7800 | 200 | 0.3 | 15 | 500 | 0.85 | ### Products available: Hot Rolled Plates & Coil, Cold Rolled Coil & Sheets # **Applications:** Heat exchanger tubes and pipes in processes for: - Exhaust system - Furnace rolls - Furnaces for drying - Heat recovery, carbon black - Hydrocarbon gases, painting - Flue gas and synthetic graphite - Production of Aluminium Sulphate - Production of mineral wool - Pyrometer - Recuperator - Waste combustion - Waste incineration ### Corrosion Resistance: Grade UNS S30815 has very high resistance to oxidation. Silicon along with chromium helps in forming a protective oxide layer on the surface of UNS S30815 thus providing good oxidation resistance. The service temperature in air should not exceed 1100°C. Compared with conventional austenitic stainless steels, UNS S30815 (EN 1.4835) has good resistance to cyanide melts and neutral salt melts and also to metal melts, e.g. lead, at high temperatures. UNS S30815 is not generally used in conditions requiring great resistance to wet corrosion. The steel is, however, slightly more resistant than Grade 304 to stress corrosion cracking in chloride bearing aqueous solutions. Its resistance is more or less similar to the Grade 316L. # Weldability: UNS S30815 has good weldability and can be welded by manual metal arc welding with covered electrodes and gas shielded arc welding like TIG and MIG. Preheating and post weld heat treatments are not normally necessary. Low heat input during welding is recommended so as to keep deformation of welded joint under control.